

COmpact Propulsion Engine Optimized with Waste HEat Recovery (CO2-POWER) Ram Ranjan, Raytheon Technologies Research Center

Project Vision

Maximize gas turbine efficiency with low weight using a supercritical CO2 (sCO2) waste heat recovery system >10% net efficiency increase over SOA with comparable power density

Range Extenders for Electric

Aviation with Low Carbon and

High Efficiency (REEACH)

REEACH / ASCEND / CABLES Annual Program Review Meeting June 28-30, 2022

REEACH Phase 1 Project Overview

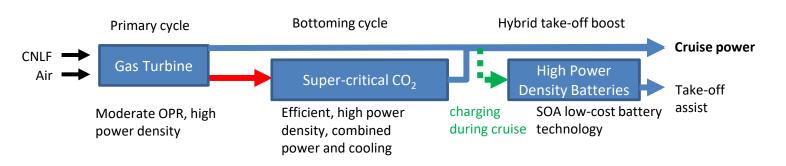
Fed. funding: \$2.8M

Length 24 mo.

20% FUEL

BURN BENEFIT

Context/history of the project


- RTRC has been developing compact sCO2 heat exchanger technology in HITEMMP program
- System works with any CNLF
- RTX leading research in electrified propulsion system

ADDITION OF sCO2
BOTTOMING CYCLE

Fuel Cell (SoA)
Turbofan (SoA)
CO-POWER

Power density, kW kg-1

65

40

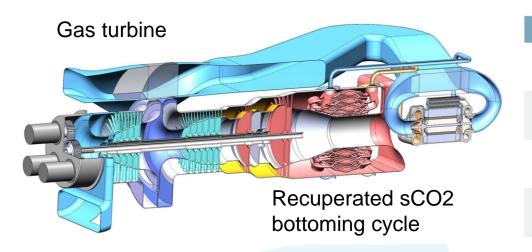
Team

Team member	Location	Role in project
Raytheon Technologies Research Center	East Hartford, CT	Requirements, system architecture design, component and system validation testing
Pratt & Whitney	East Hartford, CT	Gas turbine design, commercialization
Collins Aerospace	Rockford, IL	Electrical system design, commercialization
Oregon State University	Corvallis, OR	sCO2 cooling of electrical components

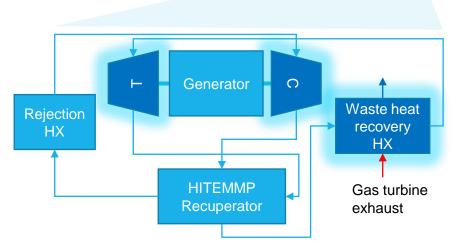
- Multi-disciplinary team with domain leadership
- All team members have executed ARPA-E programs in the past

Ram Ranjan RTRC

Brent Staubach P&W



Andreas Koenig Joshua Gess Collins OSU



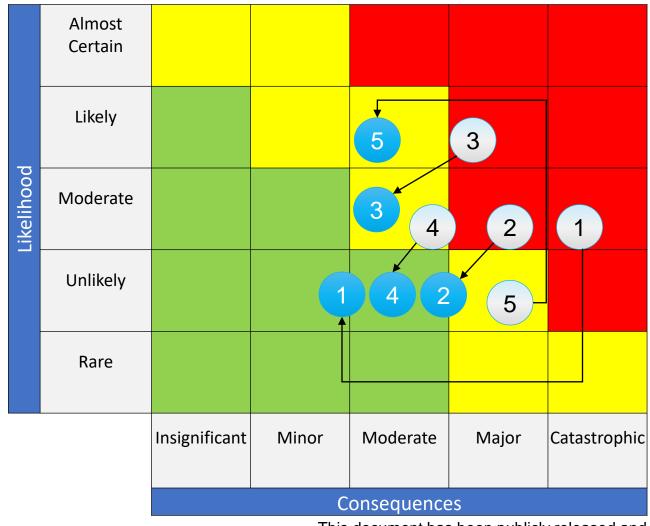
Innovation

System performance w.r.t. SOA

Energy storage and power generation metric	ARPA-e goal	Baseline	CO-POWER
Total ESPG specific energy, incl. fuel wt. (kWh/kg):	3.0 kWh/kg	3.50	3.50 ↔ 4.50
ESPG specific peak power, incl. fuel wt. (kW/kg):	0.75 kW/kg	0.88	0.80 ↔ 1.20
ESPG total capital cost, per deliv. energy (\$/kW):	\$1000/kW	341	350 ↔ 1000
ESPG delivered energy (incl. effic.) cost (\$/kWh):	\$0.15/kWh	0.152	0.16 ↔ 0.15

Compact high pressure HX technology

High speed and high efficiency turbomachinery


Barber-Nichols S-CO2 turbine wheel Photo: Sandia National Laboratory

Sub-scale and full-scale testing

Risk Update

Risk	#
HX weight & durability	1
Turbomachinery efficiency	2
CO2 leakage in components	3
System performance across flight envelope	4
System cost higher than SOA	5

This document has been publicly released and is not subject to export controls

Task Outline & Technical Objectives

Critical Risk Reduction 12 months

Sub-scale Component
Demonstrations
6 months

Phase 1 sCO2 Cycle Power
Gen Demonstration
6 months

Phase 2: Integrated gas turbine-sCO2 cycle demonstration 12 months

arpa·e

Major Tasks and Go / No-Gos

Task 1: ESPG system design and refinement

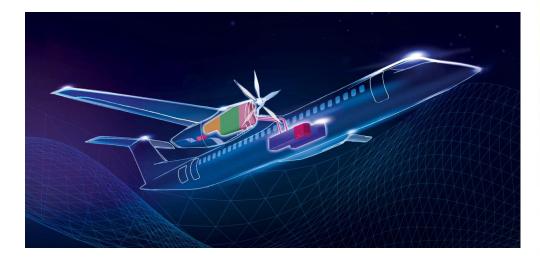
Go/No-Go: Full system detailed design review

Task 2: Waste heat recovery HX development

Task 3: sCO2 turbomachinery development

Task 4: sCO2 turbogenerator development

Task 5: sCO2 loop integration and power generation demo


Go/No-Go: sCO2 power gen demo & ESPG system review

Task 6: Technology to Market

Task 7: Program Management (TRL/MRL Review)

Technology-to-Market Approach

- ► Technology-to-Market strategy is focusing on hybrid aviation applications for RTX business units Collins Aerospace and Pratt & Whitney.
- ► General application markets are waste heat recovery and primary power generation on aircraft.
- Other application includes ground-based high efficiency power generation systems (modular nuclear, solar, etc.)
- Anticipated first markets
 - Aerospace power generation applications, TRL5-6 demo in Phase 2 program (2024)
- Key to aerospace commercialization: efficiency, durability and power density

Q & A

https://arpa-e.energy.gov

